12 research outputs found

    Genome Folding at the 30 nm Scale

    Get PDF
    In dieser Arbeit wurde eine grundlegende Frage der Genomorganisation beantwortet, indem gezeigt wurde, dass eine Struktur höherer Ordnung nach dem Nukleosom, d.h. Chromatin, tatsächlich existiert. Ein Chromatin-Modell wurde entwickelt, das die Untersuchung sehr langer Strukturen (im Bereich von Mega-Basenpaaren) erlaubt. Des Weiteren wurde zum ersten Mal die Ablösung von Linker Histonen und ganzen Nukleosomen in ein Chromatin-Modell integriert. Dies erlaubt die Untersuchung des Chromatin-Phasendiagramms. Die darin enthaltenen Strukturen werden vor dem Hintergrund von DNA-Kompaktifizierung und -Zugänglichkeit sowie anderer wichtiger Chromatineigenschaften diskutiert. Die Verteilungen der Modellparameter stammen aus experimentellen Daten [186; 187]. Zusammen mit den Ablösungseekten zeigen sie, dass jede Chromatinkonformation aus einer Verteilung von verschiedenen Strukturen besteht. Dies erklärt, warum es experimentell so schwierig ist, regulare 30nm Fasern zu finden. Die Ergebnisse zeigen, dass Histonablösungen die Eigenschaften von Chromatin massiv beeinflussen. Nukleosomablösung kann einerseits zu einem Chromatinkollabs, andererseits aber auch zum Anschwellen von Chromatin führen und der vorhergesagte Bereich optimaler DNA Kompaktifizierung stimmt exakt mit experimentellen Daten [187] uberein. Ausserdem zeigt das Modell gute Übereinstimmung mit vielen experimentell bestimmten Chromatineigenschaften. Ein Vergleich mit Daten aus 5C-Experimenten [72] belegt, dass Histonablösung eine wichtige Chromatineigenschaft ist, da nur Fasern mit Ablösungenseffekten die wichtigen physikalischen Kontakte auf der kleinen Längenskala aufweisen. Zufällige Chromatinkontakte werden theoretisch untersucht, um 3C-basierte Technologien dadurch zu verbessern, dass präziser zwischen Zufallskontakten und spezifischen Kontakten der DNA unterschieden werden kann. Grosse Teile dieser Arbeit wurden bereits veröffentlicht [63; 64], werden zur Zeit geprüft [65; 66] oder für eine Veröffentlichung vorbereitet [26; 27; 67; 68]

    Chromatin Architecture Reconstruction

    Get PDF

    The two-angle model and the phase diagram for Chromatin

    Full text link
    We have studied the phase diagram for chromatin within the framework of the two-angle model. Rather than improving existing models with finer details our main focus of the work is getting mathematically rigorous results on the structure, especially on the excluded volume effects and the effects on the energy due to the long-range forces and their screening. Thus we present a phase diagram for the allowed conformations and the Coulomb energies

    The influence of the cylindrical shape of the nucleosomes and H1 defects on properties of chromatin

    Get PDF
    We present a model improving the two-angle model for interphase chromatin (E2A model). This model takes into account the cylindrical shape of the histone octamers, the H1 histones in front of the nucleosomes and the vertical distance dd between the in and outgoing DNA strands. Factoring these chromatin features in, one gets essential changes in the chromatin phase diagram: Not only the shape of the excluded-volume borderline changes but also the vertical distance dd has a dramatic influence on the forbidden area. Furthermore, we examined the influence of H1 defects on the properties of the chromatin fiber. Thus we present two possible strategies for chromatin compaction: The use of very dense states in the phase diagram in the gaps in the excluded volume borderline or missing H1 histones which can lead to very compact fibers. The chromatin fiber might use both of these mechanisms to compact itself at least locally. Line densities computed within the model coincident with the experimental values

    Isotropic actomyosin dynamics promote organization of the apical cell cortex in epithelial cells

    Get PDF
    Although cortical actin plays an important role in cellular mechanics and morphogenesis, there is surprisingly little information on cortex organization at the apical surface of cells. In this paper, we characterize organization and dynamics of microvilli (MV) and a previously unappreciated actomyosin network at the apical surface of Madin–Darby canine kidney cells. In contrast to short and static MV in confluent cells, the apical surfaces of nonconfluent epithelial cells (ECs) form highly dynamic protrusions, which are often oriented along the plane of the membrane. These dynamic MV exhibit complex and spatially correlated reorganization, which is dependent on myosin II activity. Surprisingly, myosin II is organized into an extensive network of filaments spanning the entire apical membrane in nonconfluent ECs. Dynamic MV, myosin filaments, and their associated actin filaments form an interconnected, prestressed network. Interestingly, this network regulates lateral mobility of apical membrane probes such as integrins or epidermal growth factor receptors, suggesting that coordinated actomyosin dynamics contributes to apical cell membrane organization

    Depletion Effects Massively Change Chromatin Properties and Influence Genome Folding

    Get PDF
    corecore